C++ isfun - Part Five
at Turbine/Warner Bros.!

Discussion

Please fill in the paper with two things you would like
more information or clarification on that we’ve covered

already, that you want covered in the future, or that
would help you with your project: items “A” and “B.”

“Like understanding simile, metaphor, and hyperbole
without knowing the letters.”

Going over Homework

Homework for Next Monday (pick two)

1) Write a class for a character in gameplay, with set() and get() methods. You should
be able to get() or set() the player’s health, location, direction of movement, velocity,
and any gear he/she has with him. What character data should be public or protected
or private? What data structure should be used for the player’s direction or current
location? What data structure should be used for his/her gear? Write how a driver
class can interact with the character class, by updating, interacting with other
characters, or interacting with the environment.

2) Design and implement a blackjack or twenty-one game using the randomization
functions we have used for cards/suits. Allow playing against the computer as the
“house.” Reveal all the cards at the end of a hand.

3) Write a function mysort() that takes an array of integers or floating point values and
returns them sorted from least to greatest. Bonus 1: Pass the array by reference and
change the original array. Bonus 2: Include an option to sort the array from greatest to

least.

4) Make a dice rolling program that rolls two dice of any number of sides. Bonus:
Implement a standard dice game of your choice (http://en.wikipedia.org/wiki/

List_of _dice_games).

5) Outline how to implement the game Pong using pseudocode and/or class diagrams
(http://en.wikipedia.org/wiki/Class_diagram). Bonus: Implement one of these classes.

Homework for Next Monday (pick two)

6) Write a concatenate function that takes a
variable number of arguments (may or may not be
of different data types) and returns their
concatenation as a string.

7) Overload the ‘+’ operator to concatenate not
only strings but also integers and/or floating point
numbers.

8) Write a .cpp file that uses a function prototype
and default parameters for a function.

1) Write a class for a character in gameplay, with set() and get() methods. You should be able
to get() or set() the player’s health, location, direction of movement, velocity, and any gear he/
she has with him. What character data should be public or protected or private? What data
structure should be used for the player’s direction or current location? What data structure
should be used for his/her gear? Write how a driver class can interact with the character class,
by updating, interacting with other characters, or interacting with the environment.

#include "stdafx.h"
#include <iostream>
#include <string> // program uses C++ standard string class
using namespace std;
typedef struct { // Latitude Longitude struct
double 1lat;
double 1lon;
} latlon;
// GamePlayer class definition
class GamePlayer
{
public:
void setPlayerName(string name){
playerName = name; // store the player name in the object
} // end function setPlayerName
// function that gets the player name
string getPlayerName(){
return playerName; // return the object's playerName
} // end function getPlayerName
void setPlayerLocation(latlon 11){
playerLocation = 11;
} // end function setPlayerLocation
// function that gets the player location
latlon getPlayerLocation(){
return playerLocation; // return the player's location

——p e mm— =~y

typedef struct { // Latitude Longitude struct

double lat;
double lon;

} latlon;
// GamePlayer class definition
class GamePlayer

{

public:

void setPlayerName(string name){
playerName = name; // store the player name in the object
} // end function setPlayerName
// function that gets the player name
string getPlayerName(){
return playerName; // return the object's playerName
} // end function getPlayerName
void setPlayerLocation(latlon 11){
playerLocation = 11;
} // end function setPlayerlLocation
// function that gets the player location
latlon getPlayerLocation(){
return playerLocation; // return the player's location
}/ function that displays a welcome message
void displayMessage(){
cout << "Welcome to the game \n" << getPlayerName() << "!" << endl;
cout << "Your location is \n Latitude: " << playerlocation.lat <<
} // end function displayMessage

private:

string playerName; // course name for this GamePlayer
latlon playerlLocation;

}; // end class GamePlayer
// function main begins program execution
int main(){

string nameOfPlayer; latlon playerLocation;

GamePlayer myGamePlayer;

// display initial value of playerName

cout << "Initial player name is: " << myGamePlayer.getPlayerName() << endl;
cout << "\nPlease enter the player name:" << endl;

getline(cin, nameOfPlayer);

myGamePlayer.setPlayerName(nameOfPlayer);

cout << "\nPlease enter the player latitude:" << endl;
cin >> playerLocation.lat;
cout << "\nPlease enter the player longitude:" << endl;

cin >> playerLocation.lon;
myGamePlayer.setPlayerLocation(playerLocation);
cout << endl; // outputs a blank line
myGamePlayer.displayMessage();

system("PAUSE");

} // end main

Longitude:

<< playerLocation.lon << endl;

Implementing mapping applications

AN

Welcome Getting Started Support Mapnik

Mapnik is a Free Toolkit for ¢ Get source! bﬂﬂﬂﬂh-d
developing mapping applications. e Documentation (Github Wiki) —_—————
Above all Mapnik is about making

beautiful maps. It is easily

extensible and suitable for both

desktop and web development.

More ...

https://github.com/downloads/mapnik/mapnik/mapnik-v2.1.0.tar.bz2

#include <mapnik/distance.hpp>

#include <mapnik/ellipsoid.hpp>

// stl

#include <cmath>

namespace mapnik {

using std::atan2;

using std::cos;

using std::pow;

using std::sin;

using std::sqrt;

static const double deg2rad = ©.0174532925199432958;

static const double R = 6372795.0; // average great-circle radius of the earth

double great_circle_distance::operator() (coord2d const& pte,
coord2d const& ptl) const

{
double lon@ = pt@.x * deg2rad;
double lat@ = pto.y * deg2rad;
double lonl = ptl.x * deg2rad;
double latl = ptl.y * deg2rad;
double dlat = latl - lato;
double dlon = lonl - 1lon@;
double sin_dlat = sin(@.5 * dlat);
double sin_dlon = sin(©.5 * dlon);
double a = pow(sin_dlat,2.0) + cos(lat®@)*cos(latl)*pow(sin_dlon,2.0);
double ¢ = 2 * atan2(sqrt(a),sqrt(l1 - a));
return R * c;
}
}

typedef coord<double,2> coord2d;
typedef coord<int,2> coord?2i;

#include <boost/operators.hpp>
// stl
#include <iomanip>
#include <sstream>
namespace mapnik {
template <typename T,int dim>
struct coord {
typedef T type;
s
template <typename T>
struct coord<T,2>
: boost::addable<coord<T,2>,
boost::addable2<coord<T,2>,T,
boost::subtractable<coord<T,2>,
boost::subtractable2<coord<T,2>,T,
boost::dividable2<coord<T,2>, T,
boost::multipliable2<coord<T,2>, T > > > > > >

{
typedef T type;
T X;
Ty;
public:
coord()

x(),y(O) {3
coord(T x,T y)

1x(x),y(y) {}
template <typename T2>
coord (const coord<T2,2>& rhs)
: x(type(rhs.x)),
y(type(rhs.y)) {}

template <typename T2>
coord<T,2>& operator=(const coord<T2,2>& rhs)

{
if ((void*)this==(void*)&rhs)

{

}

x=type(rhs.x);
y=type(rhs.y);
return *this;

return *this;

}
template <typename T2>

bool operator==(coord<T2,2> const& rhs)

{

return x == rhs.x & y == rhs.y;

coord<T,2>& operator+=(coord<T,2> const& rhs)

{

X+=rhs.x;

2) Design and implement a blackjack or twenty-one game using the randomization
functions we have used for cards/suits. Allow playing against the computer as the

“house.” Reveal all the cards at the end of a hand.
Card Draw() {

class Card { fulldeck.push_back(fulldeck[0]);
public: fulldeck.erase(fulldeck.begin());
int Value; return fulldeck[fulldeck.size()-1];
char Suit; }; // Draw a card (sure, we return a card, but we shuffle it in the back
immediately)

std::string Name;
// Because you're not going to go through 52 cards in a 1v1 game!

Card(int v, char s, std::string n):
Value(v),
Suit(s),
Name(n) {
2
Card(): Value(0), Suit('?'), Name("Error") { };
~Card() { };
2

class Deck {
public:
std::vector<Card> fulldeck;

void Shuffle() {

unsigned randocard;

srand(time(0));

for (unsigned i=fulldeck.size(); i>0; i--) {
if (i==0) randocard = 0; // no, not very random is it?

else randocard = rand() % i;

fulldeck.push_back(fulldeck[randocard]);
fulldeck.erase(fulldeck.begin()+randocard);

}// for loop
}; // Shuffle

int CountAces() {
int aces = 0;
for (unsigned i=0; i<fulldeck.size(); ++i)
if (fulldeck[i].Value == 11) aces++;
return aces;
}; // Count Aces

int CountCards() {
int cards = 0;
for (unsigned i=0; i<fulldeck.size(); ++i)
cards += fulldeck][i].Value;
return cards;
}; // Count Cards

int EvaluateHand() {
int hand = CountCards();
if (hand < 22) return hand;
int aces = CountAces();
if (aces == 0) return -1;
for (int i=0; i<aces; i++) {
hand -=10;
if (hand < 22) return hand;
}
return -1; // you're out of aces, pal. suck it.
Y // return -1 if bust.
Deck() { }; // empty hands use default constructor

Deck(int cardnumber) { // a full deck wants a number
// even though we don't do anything with it
char tempsuit;
for (int suits=1; suits < 5; suits++) {
switch (suits) {
case 1: tempsuit = static_cast<char>(5);

break;

case 2: tempsuit = static_cast<char>(4);

break;

case 3: tempsuit = static_cast<char>(3);

break;

case 4: tempsuit = static_cast<char>(6);

break;

}// switch
for (int j=1; j < 14; j++)

switch (j) {
case 1: fulldeck.push_back(Card(11, tempsuit, "Ace"));
break;
case 2: fulldeck.push_back(Card(j, tempsuit, "2"));
break;
case 3: fulldeck.push_back(Card(j, tempsuit, "3"));
break;
case 4: fulldeck.push_back(Card(j, tempsuit, "4"));
break;
case 5: fulldeck.push_back(Card(j, tempsuit, "5"));
break;
case 6: fulldeck.push_back(Card(j, tempsuit, "6"));
break;
case 7: fulldeck.push_back(Card(j, tempsuit, "7"));
break;
case 8: fulldeck.push_back(Card(j, tempsuit, "8"));
break;
case 9: fulldeck.push_back(Card(j, tempsuit, "9"));
break;
case 10: fulldeck.push_back(Card(j, tempsuit, "10"));
break;
case 11: fulldeck.push_back(Card(10, tempsuit, "Jack"));
break;
case 12: fulldeck.push_back(Card(10, tempsuit, "Queen"));
hreak-

void PrintDeck() {
for (unsigned i=0; i<fulldeck.size(); ++i)
cout << fulldeck[i].Name << " of " << fulldeck[i].Suit << ", ";

cout << "\b\b." << endl; // removing the trailing ", " and replacing it with
a.

}

}; // end of Deck

int main()
{
bool again = true;
int money = 250;
int wager = 10;
charinput=""
Deck myhand, maindeck(52), dealer;

cout << "Welcome to the House of Rising Sun! Let's play Blackjack!" <<
endl;

cout << "Try to go as close as you dare to 21 points without going over." <<
endl;

while (again) {

myhand.fulldeck.clear();
dealer.fulldeck.clear();
maindeck.Shuffle();
cout << "Your funds: $" << money << ", wager per round: $" << wager <<
endl;

cout << "Dealer's hand: XX of X, ";
dealer.fulldeck.push_back(maindeck.Draw());
dealer.PrintDeck();
dealer.fulldeck.push_back(maindeck.Draw());
myhand.fulldeck.push_back(maindeck.Draw());
myhand.fulldeck.push_back(maindeck.Draw());
bool myturn = true;
while (myturn) {

cout << "My hand: ";

myhand.PrintDeck();

cout << "My points: ";
if [muhand FualimataHandA -1\ /S

myturn = false;
bool dealerturn = true;
while (dealerturn)
if (dealer.EvaluateHand() == -1) {
cout << "Dealer went bust!" << end];
dealerturn = false;
} else if ((dealer.EvaluateHand() < 17) && (dealer.EvaluateHand() <
myhand.EvaluateHand())) {
dealer.fulldeck.push_back(maindeck.Draw());
cout << "Dealer chooses to draw a card. Dealer\'s new hand: ";
dealer.PrintDeck();
1
else {
cout << "Dealer stops at " << dealer.EvaluateHand() << " points. \n";
dealerturn = false;
}// end of if..else and while loop
}// end of player's turn loop
}
else {
cout << "Bust!\n\n";
myturn = false;
}// if EvaluateHand == -1 else
}// my turn is over

// and the winner is?

if ((myhand.EvaluateHand() > dealer.EvaluateHand())) {
cout << "You win $" << wager <<". " << end|;
money += wager;

}

else if ((myhand.EvaluateHand() == -1) | | (myhand.EvaluateHand() < dealer.EvaluateHand())) {
cout << "You lose $" << wager <<". "<< end|;
money -= wager;

}

else if (myhand.EvaluateHand() == dealer.EvaluateHand())
cout << "You tie with the dealer, it's a draw." << endl;

cout << "Continue? y/n" << endl;

cin >> input;

if ((input=="n") || (input =="N') || (money < wager))
again = false;

4) Make a dice rolling program that rolls two dice of any number of sides.
Bonus: Implement a standard dice game of your choice (http://
en.wikipedia.org/wiki/List_of dice_games).

#include "stdafx.h"
#include <iostream>
#include <iomanip> // for time
#include <cstdlib> // for random
int main(){
bool rollAgain;
char c_response;
using namespace std;

do{
int i_numOfSidesl, i_numOfSides2;
srand(time(9));
cout << "How many sides are on your dice? Please enter two numbers the another with \
a 'Space' between. (Exm: 6 6 or 6 12)";
cin >> i_numOfSidesl >> i_numOfSides2;
cout << "First die rolls a " << (1 + rand() % i_numOfSidesl) << endl;
cout << "Second die rolls a " << (1 + rand() % i_numOfSides2) << endl;
cout << "Start again? (Exm: y or n) ";
cin >> c_response;
if (c_response == 'y')
rollAgain = true;
else
rollAgain = false;
} while (rollAgain);

/*

*/

#include
#include
#include
#include
#include

using namespace std;

6) Write a concatenate function that takes a variable number of arguments (may or may not
be of different data types) and returns their concatenation as a string.

"stdafx.h"
<string>
<stdarg.h>
<iostream>
<sstream>

string concatenate(char *format, ...){
va_list argptr;

va_start(argptr, format);
stringstream ss;

}

while (*format != "\0') {

// string

if (*format == 's')

{
char* s = va_arg(argptr, char *);
SS << s k< " "

}

// character

else if (*format == 'c')

{
char ¢ = (char) va_arg(argptr, int);
Ss << € <<« " ";

}

// integer

else if (*format == 'd'){
int d = va_arg(argptr, int);
ss << d << " ";

}

*format++;

}

va_end(argptr);
return ss.str();

int main(int argc, char *argv[]){

string test

= concatenate("scd", "This is a string", 'X', 34);

cout << "calling concatenate(\"scd\", \"This is a string\", 'X', 34)

return 0;

<< test << endl;

8) Write a .cpp file that uses a function prototype and default
parameters for a function.

#include "stdafx.h"
#include <iostream>
#include <string>

using namespace std;

string myStringFunction(string); // the function prototype for a function that accepts string
// params and returns a string
int _tmain(int argc, _TCHAR* argv[])

{
string s_response;
cout << "Enter a line of text." << endl;
getline (cin, s_response); // grab the entire line of user input
cout << "Here is your line returned after passing through the function.\n" <«
myStringFunction(s _response) << endl; // calls the function
return 0;
}
string myStringFunction(string aString)
{

cout << "inside myStringFunction\n";
aString += " Hello World.";
return aString;

You can download the source code for
all the textbook examples here:

"Starting Out with C++: From Control Structures through Objects, 7/e"

Gaddis

ISBN: 0132576252

Source code and appendices can be found at http://media.pearsoncmg.com/ph/esm/
ecs_gaddis_sowcpp_7/CS Support/Assorted.zip

For advanced students who want a challenge

Download, install, and compile Ogre3D

http://www.ogre3d.org/tikiwiki/Setting+Up
+An+Application+-+Visual+Studio

OR:
http://www.unrealengine.com/udk/
OR:

http://www.garagegames.com/products/
torque-3d/overview

—
7.2 Accessing Array Elements

1 CONCEPT: The individual elements of an array are assigned unique subscripts. These
subscripts are used to access the elements.

Even though an entire array has only one name, the elements may be accessed and used as
individual variables. This is possible because each element is assigned a number known as
a subscript. A subscript is used as an index to pinpoint a specific element within an array.
The first element is assigned the subscript 0, the second element is assigned 1, and so
forth. The six elements in the array hours would have the subscripts 0 through S. This is
shown in Figure 7-4.

Figure 7-4

Subscripts
0 1 2 3 4 5

N S SRR S SR

Each element in the hours array, when accessed by its subscript, can be used as a short
variable. Here is an example of a statement that stores the number 20 in the first element
of the array:

hours[0] = 20;

NOTE: The expression hours[0] is pronounced “hours sub zero.” You would read this
assignment statement as “hours sub zero is assigned twenty.”

Figure 7-5 shows the contents of the array hours after the statement assigns 20 to hours[0].

Figure 7-5

hours[0] hours[1] hours[2] hours|[3] hoursf[4] hours[5]

20 ? ? ? ? ?

NOTE: Because values have not been assigned to the other elements of the array,
0 question marks will be used to indicate that the contents of those elements are unknown.
If an array is defined globally, all of its elements are initialized to zero by default. Local
arrays, however, have no default initialization value.

The following statement stores the integer 30 in hours[3].
hours[3] = 30;

Figure 7-6 shows the contents of the array after the previous statement executes:

Figure 7-6

hours[0] hours[1] hours[2] hours|[3] hoursf[4] hours[5]

20 ? ? 30 ? ?

// GlobalvsLocallnitialization.cpp — demonstrates global vs. local initialization
#include <iostream>

#include <string>
using namespace std;
double globaldbl[10];

int main(){
int arry[10];

cout << arry[3] << " " << arry[4] << " " << arry[5] << endl;
cout << globaldbl[3] << " " << globaldbl[4] << " " << globaldbl[5] << endl;
return 0;

S ./GlobalvsLocallnitialization.exe
12293028 2

000

No bounds checking in C++ for arrays

#include <iostream>
#include <string>
using namespace std;
double globaldbl[10];
int main(){
int arry[10];
cout << arry[3] <« << arry[4] << << arry[5] << endl;
cout << globaldbl[3] << " " << globaldbl[4] << " " << globaldbl[5] << endl;
cout << arry[13] << " " << arry[14] << << arry[15] << endl;
return 0;

./NoBoundsChecking.exe
12293028 2

000

1629971688 470

Reading data in a file into an array

// This program reads data from a file into an array.

#include <iostream>

#include <fstream>

using namespace std;

int main()

{
const int ARRAY_SIZE = 10; // Array size
int numbers[ARRAY_SIZE]; // Array with 10 elements
int count = 9; // Loop counter variable
ifstream inputFile; // Input file stream object

// Open the file.
inputFile.open("TenNumbers.txt");

// Read the numbers from the file into the array.
while (count < ARRAY_SIZE && inputFile >> numbers[count])
count++;

// Close the file.
inputFile.close();

// Display the numbers read:
cout << "The numbers are: ";
for (count = @; count < ARRAY_SIZE; count++)

cout << numbers[count] << ;
cout << endl;
return 9;

Loading data from file to 2D Data
Array

If you want a variable visible across multiple files, use extern :

// Globals.h
extern int Data[l@][10];

//Globals.cpp
int Data[10][10];

However, it makes a lot more sense to load them from file. Even if you don't want to use standard library

containers, loading and saving is trivial, and will help you to modify and add additional levels in the
future. Also note that you will be able to supply an editor for maps.

Here's sample 2-dimensional C-style array serialization:

#include <fstream>

int Data[SizeX][SizeY];

// save
{
// You can use binary mode too!
ofstream File (“"data.txt");
for (unsigned y = @; y < SizeY; ++y)
for (unsigned x = @; x < SizeX ++x)
File << Data[x][y] << " "; // remove space when using binary mode!
}
// load
1
ifstream File ("data.txt");
for (unsigned y = @; y < SizeY; ++y)
for (unsigned x = @; x < SizeX ++x)
File >> Data[x][y];
}

You might also want to add some sort of header to your file - containing map size, game version, author
of the level etc. However, loading of this data is trivial and | leave it as an exercise :)

Writing/loading data to/from a 2D

// Save

#include "stdafx.h"

#include <iostream>

#include <string>

#include <fstream>

using namespace std;

const int SizeX=2;

const int SizeY=2;

int Data[SizeX][SizeY]={{1,2},{3,4}};

int main(){
// You can use binary mode too
ofstream File ("mydata.txt");
for (unsigned y = 0; y < SizeY; ++y)

for (unsigned x = @; x < SizeX; ++Xx)
File << Data[x][y] << " ";

// remove space when using binary mode!

return 0;

}

Data Array

// Load
#include "stdafx.h"
#include <iostream>
#include <string>
#include <fstream>
using namespace std;
const int SizeX=2;
const int SizeY=2;
int Data[SizeX][SizeY]={{1,2},{3,4}};
int main(){
// You can use binary mode too!
// ofstream File ("mydata.txt");
ifstream File ("mydata.txt");
for (unsigned y = 0; y < SizeY; ++y)
for (unsigned x = @; x < SizeX; ++x)
File >> Data[x][y];
cout << Data[@][@] << endl;
system("PAUSE");
return 0;

Type Casting! — converting from one data
tvoe to another

A type cast expression lets you manually promote or demote a value. The general format
of a type cast expression is

static_cast<DataType>(Value)

where value is a variable or literal value that you wish to convert and DataType is the data
type you wish to convert value to. Here is an example of code that uses a type cast expression:

double number = 3.7;
int wval;
val = static_cast<int>(number);

C-Style and Prestandard Type Cast Expressions

C++ also supports two older methods of creating type cast expressions: the C-style form
and the prestandard C++ form. The C-style cast is the name of a darta type enclosed in
parentheses, preceding the value that is to be converted. For example, the following state-
ment converts the value in number to an int.

val = (int) number;
The following statement shows another example.
perMonth = (double)books / months;

In this statement the value in the books variable is The prestandard C++ form of the type cast expression appears as a data type name fol-
sion takes place. lowed by a value inside a set of parentheses. Here is an example:

val = int(number);

The type cast in this statement returns a copy of the value in number, converted to an int.
Here is another example:

perMonth = double(books) / months;

Although the static_cast expression is preferable to either the C-style or the prestan-
dard C++ form of the type cast expression, you will probably see code in the workplace
thart uses these older styles.

Class Activity, Type Casting

#include "stdafx.h"

// This program uses a type cast expression to print a character
// from a number.

#include <iostream>
using namespace std;

int main()

{

int number = 65;

// Display the value of the number variable.
cout << number << endl;

// Display the value of number converted to
// the char data type.

cout << static_cast<char>(number) << endl;
system("PAUSE");

return O;

Functions on arrays, total, lowest, etc.

//**

// The getTotal function accepts a double array *
// and its size as arguments. The sum of the array's *
// elements is returned as a double. *

//**

double getTotal(const double array[], int size)

{
double total = 0; // Accumulator

// Add each element to total.
for (int count = 0; count < size; count++)
total += array[count];

// Return the total.
return total;

The getTotal function has two parameters:

® array[] —A const double array
®* size—An int specifying the size of the array that is passed into the arrayf)
parameter

This function returns the total of the values in the array that is passed as an argument into
the array[] parameter.

Program 7-17 (getLowest function)

o o
< ON N

oo

91 double getLowest(const double array[], int size)
92 {
93 double lowest; // To hold the lowest value
94
95 // Get the first array's first element.
96 lowest = array[0];
98 // Step through the rest of the array. When a
99 // value less than lowest is found, assign it
100 // to lowest.
Program 7-17 (continued)
101 for (int count = 1; count < size; count++)
102 {
103 if (array[count] < lowest)
104 lowest = array[count];
105 }
106
107 // Return the lowest value.
108 return lowest;
109 }

//**t***************************t*********************

// The getLowest function accepts a double array and *

// its size as arguments. The lowest value in the

// array is returned as a double.

*

*

//**

The getLowest function has two parameters:

® array[] —A const double array

Program 7-17

Program Output with Example Input Shown in Bold

Enter test score
Enter test score
Enter test score
Enter test score
The average with

e size—An int specifying the size of the array that is passed into the arrayf]

parameter

This function returns the lowest value in the array that is passed as an argument into the

array[] parameter. Here is an example of the program’s output:

number 1: 92 [Enter]
number 2: 67 [Enter]
number 3: 75 [Enter]
number 4: 88 [Enter]
the lowest score dropped is 85.0.

Searching an array

The Linear Search

The linear search is a very simple algorithm. Sometimes called a sequential search, it uses
a loop to sequentially step through an array, starting with the first element. It compares
each element with the value being searched for, and stops when either the value is found
or the end of the array is encountered. If the value being searched for is not in the array,
the algorithm will unsuccessfully search to the end of the array.

Here is the pseudocode for a function that performs the linear search:

Set found to false.
Set position to -1.
Set index to 0.
While found is false and index < number of elements
If list[index] is equal to search value
found = true.
position = index.
End If
Add 1 to index.
End While.
Return position.

-

W N

(S R RS RS B,
=S

w

//***

// The searchList function performs a linear search on an *
// integer array. The array list, which has a maximum of numElems *
// elements, is searched for the number stored in value. If the *
// number is found, its array subscript is returned. Otherwise, *
%*
*

// =1 is returned indicating the value was not in the array.
//**

int searchList(const int list[], int numElems, int value)

{
int index = 0; // Used as a subscript to search array
int position = -1; // To record position of search value
bool found = false; // Flag to indicate if the value was found

while (index < numElems && ! found)

{ if (list[index]) == value) // If the value is found
{ found = true; // Set the flag
position = index; // Record the value's subscript
;ndex++; // Go to the next element
ieturn position; // Return the position, or -1

Binary Search (requires sorted input)

int binarySearch(const int array[], int numElems, int value)

{
int first = 0, // First array element
last = numElems - 1, // Last array element
middle, // Midpoint of search
position = -1; // Position of search value
bool found = false; // Flag

while (! found && first <= last)

{
middle = (first + last) / 2; // Calculate midpoint
if (array[middle] == value) // If value is found at mid
{
found = true;
position = middle;
}
else if (array[middle] > wvalue) // If value is in lower half
last = middle - 1;
else
first = middle + 1; // If wvalue is in upper half
}

return position;

Working with the binarySearch() function

int main()
{
// Array with employee IDs sorted in ascending order.
int idNums[SIZE] = {101, 142, 147, 189, 199, 207, 222,
234, 289, 296, 310, 319, 388, 394,
417, 429, 447, 521, 536, 600};
int results; // To hold the search results
int empID; // To hold an employee ID

// Get an employee ID to search for.
cout << "Enter the employee ID you wish to search for: ";

cin >> emplD;

// Search for the ID.
results = binarySearch(idNums, SIZE, emplD);

// If results contains -1 the ID was not found.

if (results == -1)

cout << "That number does not exist in the array.\n";
else
{

// Otherwise results contains the subscript of

// the specified employee ID in the array.

cout << "That ID is found at element " << results;
cout << " in the array.\n";

}

return 0;

The Efficiency of the Binary Search

Obviously, the binary search is much more efficient than the linear search. Every time it
makes a comparison and fails to find the desired item, it eliminates half of the remaining
portion of the array that must be searched. For example, consider an array with 1,000 ele-
ments. If the binary search fails to find an item on the first attempt, the number of ele-
ments that remains to be searched is 500. If the item is not found on the second attempt,
the number of elements that remains to be searched is 250. This process continues until
the binary search has either located the desired item or determined that it is not in the
array. With 1,000 elements, this takes no more than 10 comparisons. (Compare this to the
linear search, which would make an average of 500 comparisons!)

Powers of 2 are used to calculate the maximum number of comparisons the binary search
will make on an array of any size. (A power of 2 is 2 raised to the power of some number.)
Simply find the smallest power of 2 that is greater than or equal to the number of elements
in the array. For example, a maximum of 16 comparisons will be made on an array of
50,000 elements (2'° = 65,536), and a maximum of 20 comparisons will be made on an
array of 1,000,000 elements (22° = 1,048,576).

2710 =1024

// This program demonstrates the binarySearch function, which
// performs a binary search on an integer array.

#include <iostream>

using namespace std;

// Function prototype
int binarySearch(const int [], int, int);
const int SIZE = 20;

int main()
{
// Array with employee IDs sorted in ascending order.
int idNums|[SIZE] = {101, 142, 147, 189, 199, 207, 222,
234, 289, 296, 310, 319, 388, 394,
417,429, 447,521, 536, 600};
int results; // To hold the search results
intemplD; // To hold an employee ID

// Get an employee ID to search for.
cout << "Enter the employee ID you wish to search for: ;
cin >>emplD;

// Search for the ID.
results = binarySearch(idNums, SIZE, empID);

// If results contains -1 the ID was not found.
if (results ==-1)
cout << "That number does not exist in the array.\n";
else
{
// Otherwise results contains the subscript of
// the specified employee ID in the array.
cout << "That ID is found at element " << results;
cout << "in the array.\n";
}
return O;

}

Class Exercise:
Binary Search

[[FHFERE Rk KRR KKK KR R R R R R R R ok

// The binarySearch function performs a binary searchonan *
// integer array. array, which has a maximum of size elements, *
// is searched for the number stored in value. If the number is *
// found, its array subscript is returned. Otherwise, -1is *

// returned indicating the value was not in the array. *
//***

int binarySearch(const int array[], int size, int value)
{
int first =0,
last = size - 1,
middle,
position = -1;
bool found = false;

// First array element
// Last array element
// Mid point of search
// Position of search value

// Flag

while (!found && first <= last)
{
middle = (first + last) / 2;
if (array[middle] == value)
{
found = true;
position = middle;
}
else if (array[middle] > value) // If value is in lower half
last = middle - 1;
else
first = middle + 1;

// Calculate mid point
// If value is found at mid

// If value is in upper half
}

return position;

}

Sorting an array

The Bubble Sort

The bubble sort is an easy way to arrange data in ascending or descending order. If an
array is sorted in ascending order, it means the values in the array are stored from lowest
to highest. If the values are sorted in descending order, they are stored from highest to
lowest. Let’s see how the bubble sort is used in arranging the following array’s elements in
ascending order:

.7 [2z | 3 [& | 9 | r]
Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

The bubble sort starts by comparing the first two elements in the array. If element 0 is
greater than element 1, they are exchanged. After the exchange, the array shown above
would appear as:

. 2 | 7 | sz | & | s | r |
Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

This method is repeated with elements 1 and 2. If element 1 is greater than element 2, they
are exchanged. The array above would then appear as:

2 | 3 7 | 8 9 1
Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Next, elements 2 and 3 are compared. In this array, these two elements are already in the
proper order (element 2 is less than element 3), so no exchange takes place.

As the cycle continues, elements 3 and 4 are compared. Once again, no exchange is neces-
sary because they are already in the proper order.

When elements 4 and 5 are compared, however, an exchange must take place because
element 4 is greater than element 5. The array now appears as:

2 | 3 | 7 8 1 9
Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Sorting an array, continued

At this point, the entire array has been scanned, burt its contents aren’t quite in the right
order yet. So, the sort starts over again with elements 0 and 1. Because those two are in the
proper order, no exchange takes place. Elements 1 and 2 are compared next, but once again,
no exchange takes place. This continues until elements 3 and 4 are compared. Because
element 3 is greater than element 4, they are exchanged. The array now appears as

| 2 3 7 1 8 9 |
Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

By now you should see how the sort will eventually cause the elements to appear in the

correct order. The sort repeatedly passes through the array until no exchanges are made.

Ultimately, the array will appear as

.+ | 2z | 3 | 7 | & | o |
Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Here is the bubble sort in pseudocode:

Do
Set swap flag to false.
For count is set to each subscript in array from 0 through the

next-to-last subscript
If array[count] is greater than array[count + 1]
Swap the contents of array[count] and array[count + 1].
Set swap flag to true.
End If.
End For.
While any elements have been swapped.

The C++ code below implements the bubble sort as a function. The parameter array is an
integer array to be sorted. size contains the number of elements in array.

void sortArray(int array[], int size)

{

//***

// Definition of function sortArray *

° o // This function performs an ascending order bubble sort on *
a S S X e rC I S e . // array. size is the number of elements in the array. *

//***

id sortArray(int array[], int size)
Bubble Sort

bool swap;
int temp;

—~

do
// This program uses the bubble sort algorithm to sort an {

// array in ascending order. swap = false;

#include <iostream> for (int count = 0; count < (size - 1); count++)
using namespace std; {

if (array[count] > array[count + 1])
// Function prototypes {
void sortArray(int [], int);

temp = array[count];
void showArray(const int [], int);

array[count] = array[count + 1];

array[count + 1] = temp;
int main()

swap = true;
{ }

// Array of unsorted values }
int values[6] ={7, 2, 3, 8,9, 1}; } while (swap);

}
// Display the values.
cout << "The unsorted values are:\n"; //***
showArray(values, 6); // Definition of function showArray. *

// This function displays the contents of array. size is the *
// Sort the values. // number of elements. *
sortArray(vaIues, 6),' //***
// Display them again. void showArray(const int array[], int size)
cout << "The sorted values are:\n"; {
showArray(values, 6); for (int count = 0; count < size; count++)
return O; "o,

cout << array[count] << " ";
} cout << endl;

}

Vectors vs. Arrays

The data types that are defined in the STL are commonly called containers. They are
called containers because they store and organize data. There are two types of containers
in the STL: sequence containers and associative containers. A sequence container orga-
nizes data in a sequential fashion, similar to an array. Associative containers organize data
with keys, which allow rapid, random access to elements stored in the container.

In this section you will learn to use the vector data type, which is a sequence container A
vector is like an array in the following ways:

* A vector holds a sequence of values, or elements.
e A vector stores its elements in contiguous memory locations.

®* You can use the array subscript operator [] to read the individual elements in the
vector.

However, a vector offers several advantages over arrays. Here are just a few:

* You do not have to declare the number of elements that the vector will have.

e If you add a value to a vector that is already full, the vector will automarically
increase its size to accommodate the new value.

® vectors can report the number of elements they contain.

Now you are ready to define an actual vector object. The syntax for defining a vector is
somewhat different from the syntax used in defining a regular variable or array. Here is an
example:

vector<int> numbers;

This statement defines numbers as a vector of ints. Notice that the data type is enclosed
in angled brackets, immediately after the word vector. Because the vector expands in
size as you add values to it, there is no need to declare a size. You can define a starting
size, if you prefer. Here is an example:

vector<int> numbers(10);

This statement defines numbers as a vector of 10 ints. This is only a starting size, how-
ever. Although the vector has 10 elements, its size will expand if you add more than 10
values to it.

NOTE: If you specify a starting size for a vector, the size declarator is enclosed in
parentheses, not square brackets.

When you specify a starting size for a vector, you may also specify an initialization value.
The initialization value is copied to each element. Here is an example:

vector<int> numbers(10, 2);

In this statement, numbers is defined as a vector of 10 ints. Each element in numbers is
initialized to the value 2.

You may also initialize a vector with the values in another vector. For example, look at
the following statement. Assume that setl is a vector of ints that already has values
stored in it.

vector<int> set2(setl);

After this statement executes, set2 will be a copy of setl.

Table 7-3 summarizes the vector definition procedures we have discussed.

Table 7-3

Definition Format

Description

vector<float> amounts;
vector<string> names;
vector<int> scores(15);

vector<char> letters(25, 'A');

vector<double> values2(valuesl);

Defines amounts as an empty vector of floats.
Defines names as an empty vector of string objects.
Defines scores as a vector of 15 ints.

Defines letters as a vector of 25 characters. Each
element is initialized with " ar .

Defines values2 as a vector of doubles. All the

elements of values1, which is also a vector of
doubles, are copied to value2.

class template

sw::initializer_list <initializer list>
template<class T> class initializer list;

Initializer list

This type is used to access the values in a C++ initialization list, which is a list of elements of type const T.

Objects of this type are automatically constructed by the compiler from initialization list declarations, which is a list of
comma-separated elements enclosed in braces:
auto il = { 10, 20, 30 }; // the type of il is an initializer list

Notice though that this template class is not implicitly defined and the header <initializer 1list> shall be included to
access it, even if the type is used implicitly.

initializer list objects are automatically constructed as if an array of elements of type T was allocated, with each of
the elements in the list being copy-initialized to its corresponding element in the array, using any necessary non-
narrowing implicit conversions.

The initializer list object refers to the elements of this array without containing them: copying an
initializer list object produces another object referring to the same underlying elements, not to new copies of them
(reference semantics).

The lifetime of this temporary array is the same as the initializer list object.

Constructors taking only one argument of this type are a special kind of constructor, called initializer-list constructor.
Initializer-list constructors take precedence over other constructors when the initializer-list constructor syntax is used:

1 struct myclass {

2 myclass (int,int);

myclass (initializer list<int>);
/* definitions ... */

}i

Ul W

6
7myclass foo {10,20}; // calls initializer list ctor
8 myclass bar (10,20); // calls first constructor

Template parameters

Type of the elements.

Aliased as member type initializer list::value type.

Member types

member type

definition

value type

The template parameter (T)

reference

const T&

const_reference|const T&

size type size t
iterator const T*
const_iterator |const T*

Member functions

(constructor)
size
begin

end

Construct empty initializer_list (public member function)
Retumn size of list (public member function)
Retumn iterator to beginning (public member function)

Return iterator to end (public member function)

Non-member function overloads

begin (initializer_list)
end (initializer_list)

Return iterator to beginning (function template)
Retumn iterator to end (function template)

Homework #3 Exercises for next Monday
(pick 2)

1) 19. Stock Profit

The profit from the sale of a stock can be calculated as follows:
Profit = ((NS x SP) - SC) - ((NS x PP) + PC)

where NS is the number of shares, SP is the sale price per share, SC is the sale commis-
sion paid, PP is the purchase price per share, and PC is the purchase commission paid.
If the calculation yields a positive value, then the sale of the stock resulted in a profit.
If the calculation yields a negative number, then the sale resulted in a loss.

Write a function that accepts as arguments the number of shares, the purchase price
per share, the purchase commission paid, the sale price per share, and the sale com-
mission paid. The function should return the profit (or loss) from the sale of stock.

Demonstrate the function in a program that asks the user to enter the necessary data
and displays the amount of the profit or loss.

49. An application uses a two-dimensional array defined as follows.
PP
int days[29][5];

Write code that sums each row in the array and displays the results.

Write code that sums each column in the array and displays the results.

